ΔA_{CP} in Charm Decays at LHCb

B. Viaud
(LAL-in2p3)

On behalf of the LHCb collaboration
Why Charm Physics?

■ Charm Physics is essentially a 2-generation physics: any CPV above $O(0.1\%)$ means something new.

 $\rightarrow NP$, or unexpected strong effects

■ D-D mixing, CP violating decays and rare decays involve FCNC’s that are strongly GIM-suppressed (low mass down-type quarks in the loop)

 $\rightarrow NP$ contributions can have measurable effects (not hidden by SM)

■ FCNC with down-type quarks in the loop: constrain NP couplings that can’t be reached by B/K decays.

 \rightarrow Complementarity with the B-physics program.

■ Very large samples of charmed particles at hadronic colliders!

\rightarrow Charm decays are a good place to look for NP and constrain its properties!
Two complementary ways to seek CPV (and NP) in Charm Decays

- D oscillate, so one can look for two manifestations of indirect CPV
 - CPV in mixing: $\bar{D}0 \rightarrow D0 \neq D0 \rightarrow \bar{D}0$
 - CPV in the interplay between mixing and decay

- $A(D \rightarrow f) \neq A(D \rightarrow f)$: direct CPV

Direct CPV is as good an opportunity as indirect
 - Mixing is slow, strong phases can be large in decays.
 - While indirect CPV is nearly universal, direct depends a lot on the final state. Measuring many brings many complementary clues.

- CPV is small: $\sim 0.1\%$ to $\sim 1\%$ for direct CPV \Leftrightarrow What’s SM; What’s NP? Probably an order of magnitude below for indirect CPV.

Today: direct CPV @ LHCb.

Focus on the current most precise example: $Acp(KK)-Acp(\pi\pi)$
Key point: huge b and c production in high E_p p-p collisions

- @ $\sqrt{s}=7$ TeV: $\sigma(pp \rightarrow bb^+X)=(284 \pm 20 \pm 49) \mu b$ [1]

 $\sigma(pp \rightarrow cc^+X)=(6100 \pm 930) \mu b$ [2]

In $1fb^{-1}$: $\sim10^{12}$ cc^- pairs in LHCb’s acceptance

Key point: dedicated experiment, optimized for *Flavor Physics* in a **hadronic** environment.

- Forward detector
- Performant vertexing, p and M reconstruction, particle-ID
- Very selective, polyvalent and configurable trigger.

Typical Performance

- **Charged tracks momentum**: $\sigma_p/p = 0.35-0.55\%$, $\sigma_m = 10-20$ MeV/c²
- **ECAL**: $\sigma E/E = 10\%/\sqrt{E} \oplus 1\%$ (E in GeV)
- **muon-ID**: $\varepsilon(\mu \rightarrow \mu) \sim 95\%$, mis-ID rate($\pi \rightarrow \mu$)~1%
- **K-π separation**: $\varepsilon(K \rightarrow K) \sim 95\%$, mis-ID rate($\pi \rightarrow K$)~10%
- **Proper time**: $\sigma_t \sim 30-50$ fs, $\sigma_z \sim 60 \mu$m (Prim. Vtx) $\sigma_z \sim 150 \mu$m (Secondary Vtx)

B-field polarity can be reversed: **Up** or **Down**
Trigger Efficiency
- ~30% for multibody hadronic modes
- ~90% for di-muons

Ex 1/fb:
\[\sim 0.5M \ D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^- \] on tape

Output Rate
- 3-4 kHz in 2011
- 4.5 kHz in 2012

High PT candidates
High PT displaced tracks matched with L0 objects.

Full reconstruction (ex: lifetimes)
Inclusive/exclusive modes
Highly configurable.
Easy to add/remove/prescale modes.
Peak Luminosity

- 2011: $3-4 \times 10^{32}/cm^2/s$
- 2012: $4 \times 10^{32}/cm^2/s$
- $<\#\text{collisions}>$ per bunch crossing ~ 1.5

“Luminosity Leveling” to obtained that from LHC’s luminosity

2011

- Delivered Lumi: 1.2195 fb
- Recorded Lumi: 1.1067 fb

Integrated Luminosity (1/10)

2012

- Delivered Lumi: 291.42 pb
- Recorded Lumi: 270.92 pb

Integrated Luminosity (1/10)

~1.0 fb$^{-1}$ @ $\sqrt{s}=7$ TeV

0.3 fb$^{-1}$ @ $\sqrt{s}=8$ TeV
Peak Luminosity

- 2011: $3-4 \times 10^{32}/\text{cm}^2/\text{s}$
- 2012: $4 \times 10^{32}/\text{cm}^2/\text{s}$
- $\langle \#\text{collisions} \rangle$ per bunch crossing ~ 1.5

“Luminosity Leveling” to obtained that from LHC’s luminosity

2011

2012

Hope to record 1.5 fb$^{-1}$ in 2012 + 2.5 fb$^{-1}$ in 2015/2016

$L_{\text{tot}} = 5\text{fb}^{-1}$
\[\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-) \]

- 0.6 fb^{-1} (2011)
Analysis Strategy

- Measure a time-integrated asymmetry

\[A_{\text{raw}}(f) = \frac{N(D^{*+} \rightarrow D^{0}(f)\pi^{+}) - N(D^{*-} \rightarrow D^{0}(f)\pi^{-})}{N(D^{*+} \rightarrow D^{0}(f)\pi^{+}) + N(D^{*-} \rightarrow D^{0}(f)\pi^{-})} \]

- First order Taylor Expansion:

\[A_{\text{RAW}}(f)^* = A_{\text{CP}}(f) + A_D(f) + A_D(\pi_s) + A_P(D^{*+}) \]

Use D*:

\[Q_{\text{slow } \pi} \text{ tells } D^{0}\text{'s flavor} \]

When \(f = \pi^+\pi^- \) or \(K^+K^- \): no detection asymmetry between \(D \) and \(\bar{D} \)

\[\rightarrow A_D(f) = 0 \]

Similar for \(f = \pi^+\pi^- \) and \(K^+K^- \)

\[\Delta A_{\text{RAW}} = A_{\text{RAW}}(K^+K^-) - A_{\text{RAW}}(\pi^+\pi^-) = \Delta A_{\text{CP}} \]
\[\Delta A_{\text{RAW}} = A_{\text{RAW}}(K^+K^-) - A_{\text{RAW}}(\pi^+\pi^-) = \Delta A_{\text{CP}} \]

- This rule gives a very robust way to detect a CPV effect

- But remember! It can be broken by

 - Large asymmetries (\(>>1\%\)): Taylor Expansion breaking down

 - Dependence of \(A_p(D^*)\) and \(A_D(\pi_s)\) upon \(\varepsilon(KK)/\varepsilon(\pi\pi)\).

 \textit{Ex:} \(A_D(\pi_s)\) depends upon the \(\pi_S\) phase space, and KK and \(\pi\pi\) selections favor a different region.

 - Different and asymmetric peaking backgrounds.

- So the fun in this analysis is to avoid those problems.

Main protections:

- Measurements in separate bins of \(P_T\) and \(\eta\) of \(D^*\)'s, \(P\) of \(\pi_S\)
- Fiducial cuts to remove regions of large asymmetry
- Many checks...
What does ΔA_{CP} measure exactly?

- Time integrated asymmetries: a combination of direct & indirect CPV.

$$A_{CP}(f) \approx a_{CP}^{dir}(f) + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}$$

Depends on $<t>$ of the D^0 in the sample (\sim time given the mixing to interfere).

- Indirect CPV universal to a very good approximation, but lifetime acceptance can differ between KK and $\pi\pi$.

$$\Delta A_{CP} = [a_{CP}^{dir}(K^-K^+) - a_{CP}^{dir}(\pi^-\pi^+)] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{ind}$$

→ Also measure $\Delta <t>$ to disentangle each contribution

- A year ago...

HFAG combination

$$a_{CP}^{ind} = (-0.03 \pm 0.23)\%$$

$$\Delta a_{CP}^{dir} = (-0.42 \pm 0.27)\%$$

Consistency with NO CPV hypothesis: 28%
Cut-based selection: use the decay topology and kinematics, and LHCb’s PID performance.

- Track & Vertex fit quality
- Tracks must not come from the primary vertex (PV) & ct(D)>100 μm.
- D must come from the PV, to reject D* from B decays
- \(\theta\) between D\(^0\) in lab frame and its daughters in D\(^0\) rest frame: |\(\cos\theta\)|<0.9
- Tracks identified as kaon/pions using PID info from the RICH
- \(P_T(D)>2\) GeV/c

N.B. This offline selection applied on candidates that fired a similar (looser) selection in the High Level trigger
Fiducial cuts

The magnetic field breaks the symmetry of the detector

Kinematic regions where A_{RAW} can reach 100%!

Borders where π^+/π^- are swept out while π^-/π^+ are swept in.

(this includes also the beam pipe)
Kinematic regions where A_{RAW} can reach 100%!

- Breaks the formalism (too large an angle for a Taylor expansion)
- Possible second order effects if the efficiency for being in this region differs between KK and $\pi\pi$.
- Depends more on P_x than on P_{T,D^*}, η_{D^*} or $P_{\text{slow } \pi}$

Thus: not treated perfectly by the kinematics binning

- Left-right binning + the fact that $\sim 1/2$ the sample is taken with B-field Up and $\sim 1/2$ with B-field Down should limit the overall effect.
However, to be more robust, sacrifice 25% of the statistics with **Fiducial cuts**
Fiducial cuts

Kinematic regions where A_{RAW} can reach 100%!

- Breaks the formalism (too large an angle for a Taylor expansion)
- Possible second order effects if the efficiency for being in this region differs between KK and $\pi\pi$.
- Depends more on P_X than on $P_{T,D^*,\eta_{D^*}}$ or $P_{\text{slow } \pi}$

Thus: not treated perfectly by the kine. binning

- Left-right binning + the fact that $\sim 1/2$ the sample is taken with B-field Up and $\sim 1/2$ with B-field Down should limit the overall effect.
- However, to be more robust, sacrifice 25% of the statistics with Fiducial cuts
Mass spectra and signal yields

\[\delta m = m(h^+h^-\pi^+) - m(h^+h) - m(\pi^+) \]

- **LHCb**
 - **K⁻K⁺**
 - Yield (1436±2)x10³
 - **π⁻π⁺**
 - Yield (381±1)x10³

Signal window

1844 < m(D⁰) < 1884 MeV/c²
In 216 bins
54 bins in $P_{T,D^*} \times \eta_{D^*} \times P_{\text{slow} \pi} \times \text{left/right}$
$\times 2 \text{ Mag Up / Mag Down}$
$\times 2 \text{ Before/After an LHC technical stop}$

Fit to δm distributions

1. **Signal**: double gaussian convolved with a function describing an asymmetric tail.
 - D^{*+} and D^{*-} parameters float separately.

2. **Background**: $B[1 - \exp\left(- (\delta m - \delta m_0)/C \right)]$

Finally: A_{RAW} and ΔA_{RAW} in each bin, then weighted average

$$\Delta A_{CP} = (-0.82 \pm 0.21_{\text{stat}})\%$$

($\chi^2 / NDF = 211/215$)

Fit to background subtracted decay time distributions yields:

$$\Delta \langle t \rangle / \tau = [9.83 \pm 0.22(\text{stat.}) \pm 0.19(\text{syst.})]\%$$

⇒ This would essentially be a direct CPV
<table>
<thead>
<tr>
<th>Effect</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA_{CP} with vs. without Fiducial cuts</td>
<td>0.01%</td>
</tr>
<tr>
<td>Background peaks (+their asymmetry) from $m(D^0)$ sideband injected into TOYs to check the effect on the fit.</td>
<td>0.04%</td>
</tr>
<tr>
<td>ΔA_{CP} with fit vs. sideband subtraction cuts</td>
<td>0.08%</td>
</tr>
<tr>
<td>ΔA_{CP} with multiple candidates vs. only one allowed per event</td>
<td>0.06%</td>
</tr>
<tr>
<td>ΔA_{CP} with kinematical bins vs. one single bin</td>
<td>0.02%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.11%</td>
</tr>
</tbody>
</table>

$\Delta A_{CP} = (-0.82 \pm 0.21\text{stat} \pm 0.11)\%$

3.5 σ from no CPV.
Cross Checks

- Electron and muon vetoes on the soft pion and D⁰ daughters
- Different kinematic binnings
- Stability of result vs data-taking runs
- Stability vs kinematic variables
- Toy MC studies of fit procedure, statistical errors
- Tightening of PID cuts on D⁰ daughters
- Tightening of kinematic cuts
- Variation with event track multiplicity
- Use of other signal, background line-shapes in the fit
- Use of alternative offline processing (skimming/stripping)
- Internal consistency between subsamples (splitting left/right, field up/field down)
Cross Checks

- No evidence of dependence on relevant kinematic variables
Stability with time

A technical stop occurred here

Stability wrt PID

No significant variation of ΔA_{CP} when tightening the cut on the hadron PID information provided by the RICH

PID tight+

$\Delta A_{CP} = (-0.88 \pm 0.26_{stat})\%$

PID tight++

$\Delta A_{CP} = (-1.03 \pm 0.31_{stat})\%$

Internal consistency: a closer look

Split the 216 bins into 8 smaller sets and check χ^2 for each, and between them:

$\chi^2 / NDF = 6.7/7$

<table>
<thead>
<tr>
<th>Subsample</th>
<th>ΔA_{CP}</th>
<th>χ^2 / ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-TS, field up, left</td>
<td>$(-1.22 \pm 0.59)%$</td>
<td>13/26(98%)</td>
</tr>
<tr>
<td>Pre-TS, field up, right</td>
<td>$(-1.43 \pm 0.59)%$</td>
<td>27/26(39%)</td>
</tr>
<tr>
<td>Pre-TS, field down, left</td>
<td>$(-0.59 \pm 0.52)%$</td>
<td>19/26(84%)</td>
</tr>
<tr>
<td>Pre-TS, field down, right</td>
<td>$(-0.51 \pm 0.52)%$</td>
<td>29/26(30%)</td>
</tr>
<tr>
<td>Post-TS, field up, left</td>
<td>$(-0.79 \pm 0.90)%$</td>
<td>26/26(44%)</td>
</tr>
<tr>
<td>Post-TS, field up, right</td>
<td>$(+0.42 \pm 0.93)%$</td>
<td>21/26(77%)</td>
</tr>
<tr>
<td>Post-TS, field down, left</td>
<td>$(-0.24 \pm 0.56)%$</td>
<td>34/26(15%)</td>
</tr>
<tr>
<td>Post-TS, field down, right</td>
<td>$(-1.59 \pm 0.57)%$</td>
<td>35/26(12%)</td>
</tr>
<tr>
<td>All data</td>
<td>$(-0.82 \pm 0.21)%$</td>
<td>211/215(56%)</td>
</tr>
</tbody>
</table>
World Wide

<table>
<thead>
<tr>
<th>Year</th>
<th>Experiment</th>
<th>Results</th>
<th>$\Delta(t)/\tau$</th>
<th>$\langle t \rangle/\tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Belle</td>
<td>$A_\Gamma = (0.01 \pm 0.30 \text{ (stat.)} \pm 0.15 \text{ (syst.)})%$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2008</td>
<td>BaBar</td>
<td>$A_\Gamma = (0.26 \pm 0.36 \text{ (stat.)} \pm 0.08 \text{ (syst.)})%$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>LHCb</td>
<td>$A_\Gamma = (-0.59 \pm 0.59 \text{ (stat.)} \pm 0.21 \text{ (syst.)})%$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2008</td>
<td>BaBar</td>
<td>$A_{CP}(KK) = (0.00 \pm 0.34 \text{ (stat.)} \pm 0.13 \text{ (syst.)})%$</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A_{CP}(\pi\pi) = (-0.24 \pm 0.52 \text{ (stat.)} \pm 0.22 \text{ (syst.)})%$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Belle</td>
<td>$\Delta A_{CP} = (-0.86 \pm 0.60 \text{ (stat.)} \pm 0.07 \text{ (syst.)})%$</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2011</td>
<td>LHCb</td>
<td>$\Delta A_{CP} = (-0.82 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst.)})%$</td>
<td>0.10</td>
<td>2.08</td>
</tr>
<tr>
<td>2012</td>
<td>CDF Prelim.</td>
<td>$\Delta A_{CP} = (-0.62 \pm 0.21 \text{ (stat.)} \pm 0.10 \text{ (syst.)})%$</td>
<td>0.25</td>
<td>2.58</td>
</tr>
</tbody>
</table>

CDF public note 10784

Zero CPV

$$a_{CP}^{\text{ind}} = (-0.025 \pm 0.231)\%$$

$$\Delta a_{CP}^{\text{dir}} = (-0.656 \pm 0.154)\%$$

Agreement with no CPV: 6×10^{-5}
Predictions are difficult with D mesons

- Too light (heavy) for the techniques that work in B (K) physics

Present consensus

- Difficult for the SM to generate more than $O(10^{-4}-10^{-3})$
 (canonic point of view till 2011)
- But possible: one can think of Hadronic enhancements pushing it up to $O(1\%)$
- Would help: Individual asymmetries
- Would help: Several decay modes should be affected by the same NP, but not the same strong effects: compare A_{CP} measured in each mode to distinguish enhanced contributions of higher order standard model diagrams from NP effects

Ex:

\[\rightarrow D^+_S \rightarrow K_S h^+; \ \phi h^+ \]

\[\rightarrow D^+ \rightarrow K + \bar{K}^*0; \ K^*+\bar{K}^0 \]

\[\rightarrow D^+ \rightarrow \rho^0 \pi^+; \ \pi^+ \pi^0; \ \pi^+ \eta' \]

\[\rightarrow D_S \rightarrow K^+\phi, \ K^+\eta', \ K^{(*)0}\pi^+ \]

\[\rightarrow D \rightarrow h^+h^-h^+; \ h^+h^-h^+h^- \]

See, e.g.,

Isidori, Kamenik, Ligeti, Perez (arXiv:1111.4987)
Cheng, Chaing (arXiv:1201.0785)
Pirtskhalava, Uttararat (arXiv:1112.5451)
Prospects

Short term (1.1 or 2.5 fb⁻¹)

- **Update** \(\Delta A_{\text{CP}} = A_{\text{CP}}(K^+K^-) - A_{\text{RAW}}(\pi^+\pi^-) \)

 \(\rightarrow \sigma \) from 0.25% to \(\sim 0.15\% \) may be enough to confirm a 4-5\(\sigma \) effect.

- **\(\Delta A_{\text{CP}} \) with \(D^+_{(S)} \rightarrow K_S h^+ \) vs. \(\phi h^+ \) (work started !)**

 \(\rightarrow \) Expect \(\sim 7M \) \(D^+ \rightarrow \phi \pi^+ \) and \(\sim 3.5M \) \(D^+ \rightarrow K_S \pi^+ \)

 Belle: \(\Delta A_{\text{CP}} (D^+ \rightarrow \phi \pi^+ \text{ vs. } D^+_{(S)} \rightarrow \phi \pi^+) = (0.51 \pm 0.28 \pm 0.05)\% \) with \(0.238M \) \(D^+ \rightarrow \phi \pi^+ \)

 \textbf{PRL 108, 071801 (2012)}

 Belle: \(A_{\text{CP}} (D^+ \rightarrow K_S \pi^+) = (0.36 \pm 0.09 \pm 0.07)\% \) with \(1.7M \) events

 \(CPV \) due to the kaon

 \textbf{arXiv:1203.6409}

- **Dalitz analyses of \(D \rightarrow h^+h^-h^-, h^+h^+h^-h^- \) modes**

Longer term: LHCb upgrade (2019)
Control of systematic effects: good ex. of precision physics @ pp collider.

Evidence for CPV in charm decays at LHCb

→ Mostly a direct CPV
→ Not yet a 5σ effect
→ But not far from it when combined with other experiments (4σ)

Could be SM, could be NP, it’s anyway very interesting.

There’s a large Charm physics programme at LHCb. Other modes will be studied in the future to over-constrain the problem.

And don’t forget the LHCb’s upgrade!

⇒ Stay tuned (at least for the next 15 years 😊)!
Back-up
LHC’s Schedule

- **2009**: LHC startup, $\sqrt{s} = 900$ GeV
- **2011**: $\sqrt{s}=7\sim8$ TeV, $L=6\times10^{33}$ cm$^{-2}$ s$^{-1}$, bunch spacing 50 ns
- **2013**: Go to design energy, nominal luminosity
- **2016**: $\sqrt{s}=13\sim14$ TeV, $L\sim1\times10^{34}$ cm$^{-2}$ s$^{-1}$, bunch spacing 25 ns
- **2018**: Injector and LHC Phase-1 upgrade to full design luminosity
- **2022**: HL-LHC Phase-2 upgrade, IR, crab cavities?
- **2030?** $\sqrt{s}=14$ TeV, $L=5\times10^{34}$ cm$^{-2}$ s$^{-1}$, luminosity levelling

- **Atlas, CMS**
 - ~20-25 fb$^{-1}$
 - ~2.5 fb$^{-1}$
 - ~75-100 fb$^{-1}$
 - ~6.5 fb$^{-1}$
 - ~350 fb$^{-1}$
 - ~19 fb$^{-1}$
 - ~3000 fb$^{-1}$
 - ~57 fb$^{-1}$

M.Nessi, Chamonix 2012
Upgraded LHCb (start by 2019)

Should bring ~180 times more hadronic charm decays!

- 50 fb\(^{-1}\) with \(L_{\text{peak}}=1-2 \times 10^{33}\) cm\(^{-2}\)s\(^{-1}\)
- At \(\sqrt{s}=14\) TeV: \(\sigma_{\text{CC}} \sim 1.8\) times larger
- Fully software trigger: Trigger Efficiency on hadronic decays \(\times 2\)
 (reduce the role the hardware L0 trigger)

-This means \(\sim 460M D^0 \rightarrow K^+ K^- \) & \(130M D^0 \rightarrow \pi^+ \pi^-\).
 Naïve extrapolation: \(\sigma_{\text{Acp}} \sim 0.015\%\). That’s far below the current systematics. A part of the statistic could be sacrificed to improve it.

-Also for decays like \(D^+_{(S)} \rightarrow K_S h^+ \) vs. \(\phi h^+\), will we probably be pushing on the systematics by then.

-And many other things: DCS, precision Dalitz studies, etc...

See e.g. “Workshop on the Implications of LHCb measurements”, CERN, April 16-18, 2012
Preliminary estimates!

Not everything is solved by increasing the statistics. In some cases, some will be sacrificed to improve systematics.
<table>
<thead>
<tr>
<th>samples</th>
<th>parameter(s)</th>
<th>precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS/RS $K\pi$</td>
<td>(x'^2, y')</td>
<td>$\mathcal{O}[(10^{-5}, 10^{-4})]$</td>
</tr>
<tr>
<td>WS/RS $K\mu\nu$</td>
<td>r_M</td>
<td>$\mathcal{O}(5 \times 10^{-7})$</td>
</tr>
<tr>
<td>WS/RS $K\mu\nu$</td>
<td>$</td>
<td>p/q</td>
</tr>
<tr>
<td>$D^{*+} \to D^0\pi^+$; $D^0 \to K^-K^+$, $\pi^-\pi^+$</td>
<td>ΔA_{CP}</td>
<td>0.015%</td>
</tr>
<tr>
<td>$D^{*+} \to D^0\pi^+$; $D^0 \to K^-K^+$</td>
<td>A_{CP}</td>
<td>0.010%</td>
</tr>
<tr>
<td>$D^{*0} \to D^0\pi^+$; $D^0 \to \pi^-\pi^+$</td>
<td>A_{CP}</td>
<td>0.015%</td>
</tr>
<tr>
<td>$D^{*0} \to D^0\pi^+$; $D^0 \to K^0_\pi^-\pi^+$</td>
<td>(x, y)</td>
<td>(0.015%, 0.010%)</td>
</tr>
<tr>
<td>$D^{*0} \to D^0\pi^+$; $D^0 \to K^-K^+ (\pi^-\pi^+)$</td>
<td>y_{CP}</td>
<td>0.004% (0.008%)</td>
</tr>
<tr>
<td>$D^{*0} \to D^0\pi^+$; $D^0 \to K^-K^+ (\pi^-\pi^+)$</td>
<td>A_Γ</td>
<td>0.004% (0.008%)</td>
</tr>
<tr>
<td>$D^{*0} \to D^0\pi^+$; $D^0 \to K^-K^+ \pi^-\pi^+$</td>
<td>A_T</td>
<td>2.5×10^{-4}</td>
</tr>
<tr>
<td>$D^+ \to K^0_\pi K^+$</td>
<td></td>
<td>10^{-4}</td>
</tr>
<tr>
<td>$D^+ \to K^-K^+\pi^+$</td>
<td></td>
<td>5 \times 10^{-5}</td>
</tr>
<tr>
<td>$D^+ \to \pi^-\pi^+\pi^+$</td>
<td></td>
<td>8 \times 10^{-5}</td>
</tr>
</tbody>
</table>
Reminder:

$$\Delta A_{CP} = \left[a_{CP}^{dir}(K^-K^+) - a_{CP}^{dir}(\pi^-\pi^+) \right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{ind}$$

$$\Delta \langle t \rangle \neq 0$$ since the lifetime acceptance differs between KK and $\pi\pi$

e.g. Smaller KK opening angle: easier to miss cut vetoing tracks from Primary Vertex.

Fit to background subtracted decay time distributions yields:

$$\Delta \langle t \rangle / \tau = [9.83 \pm 0.22{\text{(stat.)}} \pm 0.19{\text{(syst.)}}] \%$$

Essentially due to the fraction of D^* from B decays
Reminder: \[\Delta A_{CP} = [a_{CP}^{dir}(K^-K^+) - a_{CP}^{dir}(\pi^-\pi^+)] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{ind} \]

\[\Delta \langle t \rangle \neq 0 \text{ since the lifetime acceptance differs between } KK \text{ and } \pi\pi \]

e.g. Smaller KK opening angle: easier to miss cut vetoing tracks from Primary Vertex.

Fit to background subtracted decay time distributions yields:

\[\Delta \langle t \rangle / \tau = [9.83 \pm 0.22(\text{stat.}) \pm 0.19(\text{syst.})] \% \]

Indirect CPV mostly cancels
<table>
<thead>
<tr>
<th>Sample</th>
<th>Observable</th>
<th>Sensitivity (1.0 fb(^{-1}))</th>
<th>Sensitivity (2.5 fb(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagged (KK)</td>
<td>(y_{CP})</td>
<td>(6 \times 10^{-4})</td>
<td>(4 \times 10^{-4})</td>
</tr>
<tr>
<td>Tagged (\pi \pi)</td>
<td>(y_{CP})</td>
<td>(11 \times 10^{-4})</td>
<td>(7 \times 10^{-4})</td>
</tr>
<tr>
<td>Tagged (KK)</td>
<td>(\Gamma)</td>
<td>(6 \times 10^{-4})</td>
<td>(4 \times 10^{-4})</td>
</tr>
<tr>
<td>Tagged (\pi \pi)</td>
<td>(\Gamma)</td>
<td>(11 \times 10^{-4})</td>
<td>(7 \times 10^{-4})</td>
</tr>
<tr>
<td>Tagged WS/RS (K \pi)</td>
<td>(x^2)</td>
<td>(7 \times 10^{-5})</td>
<td>(4 \times 10^{-5})</td>
</tr>
<tr>
<td>Tagged WS/RS (K \pi)</td>
<td>(y')</td>
<td>(13 \times 10^{-4})</td>
<td>(8 \times 10^{-4})</td>
</tr>
<tr>
<td>Tagged (K_S \pi \pi)</td>
<td>(x)</td>
<td>(4 \times 10^{-3})</td>
<td>(3 \times 10^{-3})</td>
</tr>
<tr>
<td>Tagged (K_S \pi \pi)</td>
<td>(y)</td>
<td>(3 \times 10^{-3})</td>
<td>(2 \times 10^{-3})</td>
</tr>
<tr>
<td>Tagged (K_S \pi \pi)</td>
<td>(</td>
<td>q/p</td>
<td>)</td>
</tr>
<tr>
<td>Tagged (K_S \pi \pi)</td>
<td>(\phi)</td>
<td>25°</td>
<td>15°</td>
</tr>
</tbody>
</table>

Preliminary estimates!
FULL 40 MHz FE READOUT

RICH
New photon detectors

Calorimeter+Muon
Remove M1, SPD, PS
New calorimeter FE electronics

Tracking
New silicon trackers
Reduce straw coverage +
 a) fiber tracker
 b) larger silicon tracker

Vertex Locator
a) New pixel detector
 b) Improved strip detector