Introduction

- Due to large mass of top quark, top-Yukawa coupling is nearly unitary and paramount to an understanding of EWSB
 - tH production offers a unique opportunity for direct measurement of the coupling and could provide hints to new physics
 - Several Higgs decay channels with very different strategies and advantages

Diphoton Channel

This channel capitalizes on the fine resolution of the diphoton mass to enhance sensitivity and is also inclusive of tH production.

Bottom Channel

This channel allows for a measurement of the Higgs coupling to both 3rd generation quarks and benefits from the large H-bb branching ratio.

Multilepton Channel

This channel is sensitive to the Higgs coupling to the 3rd generation charged lepton as well as the off-shell couplings of H+WW* and H+ZZ*.

Analysis Strategy

- Modelled by simple exponential
- Fit for each category to the data sidestrips using 7+1 TeV data
- Validated in data control region with loosened isolation + ID
- Shape parameters are parameterized as a function of m_jets of which n_jets are b-tagged (≥4j, ≥4j, 2b)
- Signal regions are selected such that S/B > 1% and S/B > 0.3

Systematic Uncertainties

- **Diphoton Channel**
 - Background Modeling: Large uncertainty on the underlying event
 - Signal Modeling: Shaped parameters are parameterized as a function of m_jets of which n_jets are b-tagged (≥4j, ≥4j, 2b)
 - Signal shape assumed to be same among different Higgs productions

Results

- Consistent with the SM, no significant excess is observed
 - 95% CL limits on σ_{H diphot} & σ_{H+bb}

Combination & Future

- Using the full Run 1 dataset, no significant excess is observed. A 95% CL limit and measurement of the signal strength is included into the ATLAS Higgs combination. Observation is expected to be possible within Run 2.

Jared Vasquez (Yale University), for the ATLAS Collaboration

arXiv:1506.05988 [hep-ex] [multileptons]

arXiv:1507.04548 [hep-ex] [combination]

LHCP Poster Session 2015

LHC Experiment