We are currently experiencing degraded performance with our storage system. We greatly appreciate your patience and we apologize for the general slowness and any inconvenience. Click here to join our chat for updates.

CERN Accelerating science

Report number CERN-EP-2016-101 ; arXiv:1604.06645 ; CERN-EP-2016-101
Title Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

Acharya, B. (King's Coll. London ; ICTP, Trieste) ; Alexandre, J. (King's Coll. London) ; Bendtz, K. (Stockholm U.) ; Benes, P. (IEAP CTU, Prague) ; Bernabéu, J. (Valencia U., IFIC) ; Campbell, M. (CERN) ; Cecchini, S. (INFN, Bologna) ; Chwastowski, J. (Cracow, INP) ; Chatterjee, A. (Geneva U.) ; de Montigny, M. (Alberta U.) ; Derendarz, D. (Cracow, INP) ; De Roeck, A. (CERN) ; Ellis, J.R. (King's Coll. London ; CERN) ; Fairbairn, M. (King's Coll. London) ; Felea, D. (Bucharest, Inst. Space Science) ; Frank, M. (Concordia U., Montreal) ; Frekers, D. (Munster U.) ; Garcia, C. (Valencia U., IFIC) ; Giacomelli, G. (INFN, Bologna ; Bologna U.) ; Hasegan, D. (Concordia U., Montreal) ; Kalliokoski, M. (CERN) ; Katre, A. (Geneva U.) ; Kim, D.W. (Gangneung-Wonju Natl. U.) ; King, M.G.L. (Valencia U., IFIC) ; Kinoshita, K. (Cincinnati U.) ; Lacarrère, D.H. (CERN) ; Lee, S.C. (Gangneung-Wonju Natl. U.) ; Leroy, C. (Concordia U., Montreal) ; Lionti, A. (Geneva U.) ; Margiotta, A. (INFN, Bologna ; Bologna U.) ; Mauri, N. (INFN, Bologna) ; Mavromatos, N.E. (King's Coll. London) ; Mermod, P. (Geneva U.) ; Milstead, D. (Stockholm U.) ; Mitsou, V.A. (Valencia U., IFIC) ; Orava, R. (Helsinki U.) ; Parker, B. (Unlisted, UK) ; Pasqualini, L. (INFN, Bologna ; Bologna U.) ; Patrizii, L. (INFN, Bologna) ; Păvălas, G.E. (Bucharest, Inst. Space Science) ; Pinfold, J.L. (Alberta U.) ; Platkevič, M. (IEAP CTU, Prague) ; Popa, V. (Bucharest, Inst. Space Science) ; Pozzato, M. (INFN, Bologna) ; Pospisil, S. (IEAP CTU, Prague) ; Rajantie, A. (Imperial Coll., London) ; Sahnoun, Z. (INFN, Bologna ; CNAAG, Algiers) ; Sakellariadou, M. (King's Coll. London) ; Sarkar, S. (King's Coll. London) ; Semenoff, G. (British Columbia U.) ; Sirri, G. (INFN, Bologna) ; Sliwa, K. (Tufts U., Inst. of Cosmology) ; Soluk, R. (Alberta U.) ; Spurio, M. (INFN, Bologna ; Bologna U.) ; Srivastava, Y.N. (Northeastern U.) ; Staszewski, R. (Cracow, INP) ; Suk, M. (IEAP CTU, Prague) ; Swain, J. (Northeastern U.) ; Tenti, M. (INFN, Bologna) ; Togo, V. (INFN, Bologna) ; Trzebinski, M. (Cracow, INP) ; Tuszynski, J.A. (Alberta U.) ; Vento, V. (Valencia U., IFIC) ; Vives, O. (Valencia U., IFIC) ; Vykydal, Z. (IEAP CTU, Prague) ; Whyntie, T. (Unlisted, UK ; Queen Mary, U. of London) ; Widom, A. (Northeastern U.) ; Willems, G. (Munster U.) ; Yoon, J.H. (Konkuk U.)

Imprint 22 Apr 2016. - 25 p.
Note Comments: 25 pages, 11 figures, 2 tables, submitted to JHEP
25 pages, 11 figures, 2 tables, under review by JHEP
In: JHEP 08 (2016) 067
DOI 10.1007/JHEP08(2016)067
Subject category Particle Physics - Experiment
Accelerator/Facility, Experiment CERN LHC ; MoEDAL
Abstract The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $\sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb$^{-1}$. No magnetic charge exceeding $0.5g_{\rm D}$ (where $g_{\rm D}$ is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV$\leq m \leq$ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for $1g_{\rm D}\leq|g|\leq 6g_{\rm D}$, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for $1g_{\rm D}\leq|g|\leq 4g_{\rm D}$. Under the assumption of Drell-Yan cross sections, mass limits are derived for $|g|=2g_{\rm D}$ and $|g|=3g_{\rm D}$ for the first time at the LHC, surpassing the results from previous collider experiments.
Copyright/License Publication: © 2016-2020 CERN (License: CC-BY-4.0), sponsored by SCOAP³
Preprint: © 2016-2020 CERN (License: CC-BY-4.0)

Corresponding record in: Inspire

 Rekord stworzony 2016-04-25, ostatnia modyfikacja 2019-05-31

Article from SCOAP3:
Pobierz pełny tekstPDF
Pobierz pełny tekstPDF
Springer Open Access article:
Pobierz pełny tekstPDF
Link zewnętrzny:
Pobierz pełny tekstINTERACTIONS