Abstract

We discuss the J/ψ suppression in the framework of multiple collision models. From the analysis of the Pb–Pb NA50 data we conclude that the strength of the absorption has increased, but we find no clear evidence for the formation of the quark–gluon plasma.
Absorption and J/ψ Suppression in Heavy Ion Collisions

J. Dias de Deus
Dept. of Physics and CENTRA, IST, Lisbon, Portugal

J. Seixas*
Theory Division CERN
CH 1211 Geneva 23, Switzerland

July 31, 2013

*On leave from Dept. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal
The suppression of the J/ψ production in nucleus–nucleus collisions was proposed, more than ten years ago, by Matsui and Satz [1] as a signal for the formation of the quark–gluon plasma (QGP). The suggested mechanism is simple: when colour is liberated Debye screening prevents the creation of the $c\bar{c} \rightarrow J/\psi$ bound state.

Suppression of the J/ψ relative to Drell–Yan (DY) production was indeed observed by the NA38 collaboration in O–U and S–U collisions [2]. However, it was soon realized that conventional nuclear absorption of the J/ψ should play, qualitatively at least, a similar role [3]. The problem of disentangling absorption effects from quark–gluon plasma formation became a central issue in the field of heavy-ion collisions.

In recent years, a great deal of theoretical effort was developed in trying to clarify the origin of a large J/ψ absorption that would be able to justify the observed suppression. In fact, a cross–section of the order of 7 mb, much larger than the observed ψN cross–section, is needed [8]. In this context, the role of interacting pre–resonant $c\bar{c}$ states in matter is to help achieve such large cross–section [4].

In the last year the NA50 collaboration has reported an anomalous J/ψ suppression in Pb–Pb collisions [5]. This anomaly appears as a deviation from the conventional plot of the ratio J/ψ over DY against the average path length L for large values of the transverse energy E_T. This average path length is used in the parametrization $R(L)$ of the J/ψ over DY suppression

$$R(L) = \exp(-\rho \sigma L),$$

where ρ being the nuclear density and σ the absorption cross–section.

Several explanations exist for the anomalous suppression. Some are based on the quark–gluon plasma formation [6]. Others on the additional destruction of the J/ψ in the interaction with comovers formed in the collision [7]. In the latter case, the effect amounts to an increase of ρ with E_T and effectively to a decrease of the J/ψ over DY ratio faster than exponential. A discussion of these explanations is contained in [8].

More recently, the NA50 collaboration, from the analysis of the 1996 data, reported in addition to the anomalous suppression, a discontinuity or abrupt fall in the ratio J/ψ over DY around $E_T \simeq 50$ GeV [9].

Next we would like to look at the NA50 data from the point of view of a very simple model [10, 11]. In principle, the model should be able, to some extent, to discriminate quark–gluon plasma formation from absorption effects. The essential features of the model are the following:
1. Nuclear collisions are a superposition of elementary (nucleonic, partonic) collisions. This is the framework of the Glauber model, Dual Parton Model (DPM) and many other models.

2. Fluctuations in multiplicity n and in transverse energy E_T are mainly determined by the fluctuations in the number ν of elementary collisions. This is required when comparing distributions in nucleus–nucleus collisions with distributions in nucleon–nucleon collisions.

3. In the production of a rare, unabsorbed event C, as DY or W/Z, the E_T distribution $P_C(E_T)$, associated to the rare event ensemble and the minimum–bias E_T distribution $P(E_T)$ are universally related by

$$P_C(E_T) = \frac{E_T}{\langle E_T \rangle} P(E_T)$$

or, if normalization cannot be established, by

$$N_C(E_T) \sim E_T N(E_T)$$

N_C and N denoting the number of rare and minimum–bias events, respectively. This relation is (approximately) true in detailed calculations with multiple–collision models.

4. As absorption means that not all collisions producing event C are effective, the effect can be included by making the change

$$\nu \rightarrow \nu^\epsilon, \quad 0 \leq \epsilon \leq 1$$

thus effectively decreasing ν. As a consequence, instead of (3), the relation reads

$$N_C(E_T) \sim E_T^\epsilon N(E_T)$$

For the ratio of the absorbed J/ψ over the unabsorbed DY, from (4) and (3), we arrive at

$$R(E_T) = N_{J/\psi}(E_T)/N_{DY}(E_T) \sim 1/E_T^\gamma, \quad \gamma = 1 - \epsilon$$

All the absorption models we are aware of, including models with co-movers, show for the ratio a behaviour roughly as in (3), in particular with a positive curvature as a function of E_T.

2
The model was successfully tested with the NA38 S–U data. Relations (5), for DY, and (3), for \(J/\psi \) production with \(\epsilon_{J/\psi} \approx 0.7 \), were seen to work fairly well. As 1995 NA50 data on minimum–bias, DY and \(J/\psi \) \(E_T \) distributions are now available \[12\], we will compare those data with our simple test model.

In Fig. 1 we show the 1995 NA50 experimental points for the \(E_T \) distribution associated to the production of Drell–Yan \(\mu^+\mu^- \) pairs. The curve was obtained from the minimum–bias experimental \(E_T \) distribution by using relation (3). The general shape is correctly described. At low \(E_T \), since there are experimental efficiency problems, one does not expect any kind of agreement. To the curve itself there are associated errors (not shown), specially in the low–\(E_T \) region, mainly due to the difference in binning of the minimum–bias and DY experimental distributions.

In Fig. 2 we present the NA50 experimental points for the \(E_T \) distribution associated to the production of \(J/\psi \). The solid curve corresponds to relation (5) with \(\epsilon_{J/\psi} = 0.6 \). Once more the low–\(E_T \) experimental points are not reliable and one should not expect a good fit.

In Fig. 3a we show the 1995 data for the ratio \(J/\psi \) over DY and the parametrization (6) with \(\gamma_{J/\psi} = 1 - \epsilon_{J/\psi} = 0.4 \), while in Fig. 3b we show the same ratio for the 1996 data with the same parametrization. In both cases the agreement is fairly good.

It is perhaps interesting to try to understand the meaning of the absorption parameter \(\epsilon \). The fact that it has decreased from \(\epsilon \approx 0.7 \) in S–U to \(\epsilon \approx 0.6 \) in Pb–Pb is an indication of the increase in \(J/\psi \) absorption and destruction in the interacting medium.

If we use the variable \(L \), the average path length, and write the \(J/\psi \) over DY suppression ratio in the conventional form (1) and compare it with (5),

\[
R(E_T) = E_T^{\epsilon - 1},
\]

we obtain

\[
\ln E_T = \frac{\rho}{1 - \epsilon} \sigma L.
\]

Relation (8) allows, in principle, for the determination of \(\epsilon \). Notice that \(\epsilon = 1 \) (no absorption) requires \(\rho = 0 \) (no medium). It is clear that as absorption increases, \(\epsilon \) decreases and, for the same \(E_T \), \(L \) increases as expected \[13\].

However (8) cannot be valid for very large \(E_T \) since \(L \) is finite. The fact that \(L \) has an upper bound \(L_{max} \) implies that looking for \(J/\psi \) having
an interaction in a range larger than this value is impossible and the ratio \(J/\psi/DY \) simply cannot exist beyond it. The \(E_T \) variable does not suffer from this problem since, by definition, \(E_T \) measures the existence of a real interaction and therefore has to occur inside the interaction region anyway. In this sense \(E_T \) is a completely reliable variable, while \(L \) is not.

To understand the sudden drop in the ratio \(J/\psi/DY \) as a function of \(L \) we have to look at what happens as we increase the centrality of the events. In this case the density in the interaction region also increases and other degrees of freedom are going to be excited, making it increasingly opaque. Therefore, as we increase \(E_T \) it will be more and more difficult for the \(J/\psi \) to escape the interaction region, leading thus to the observed drop in the ratio \(R(L) \). Whether these new degrees of freedom correspond to QGP plasma droplets or any other object does not come out from the analysis we have just performed. The only thing we can say is that deviations from (1) can be seen as due to the appearance of new degrees of freedom in the physics of nuclear collisions. However, describing them solely as signals of QGP is probably pushing a little too far, since the shape of \(R(E_T) \) clearly indicates absorption mechanisms at work.

Conclusions

It is by now clear that the simple test model developed in [10] reproduces rather well the data for the NA38–50 experiments in a large range of energies and of nuclei. It is true that the model does not predict the form of the minimum–bias distribution but rather uses this information to describe the DY and \(J/\psi \) distributions. Since this model has only one free parameter, namely the absorption parameter \(\epsilon \), and has a very simple, but fundamental set of hypotheses for multicollision of elementary participants, it serves as a straightforward and powerful way of checking the consistency of the data. It is also interesting to notice that so far the model shows that minimum–bias, DY and \(J/\psi \) distributions give redundant information as they can be related in a simple way.

The main conclusion we can extract from the application of the model to the NA50 Pb–Pb data is that up to now there is no evidence for \(J/\psi \) suppression strictly due to QGP formation and that the data can be well described by an absorption mechanism. However, because of the density/opacity changes discussed above, it is not excluded that droplets of plasma could have been produced in the Pb–Pb interaction. The only statement that can be made
with certainty at present is that the drop in the ratio J/ψ over DY is due to absorption in a medium with increasing density and consequently with increasing opacity.

This naturally raises the question of whether one will ever be able to disentangle between J/ψ absorption and J/ψ destruction in a deconfined medium. Only future experiments, in particular ALICE at the LHC, can enable us to answer this question. It is however important to bear it in mind that any conclusions about deconfinement transitions using the mean path length L in a nuclear medium can lead to an incorrect interpretation of the behaviour of the observed results.

Acknowledgements

Both authors express their thanks to Paula Bordalo and Sérgio Ramos for providing access to the NA50 Pb–Pb data and for very helpful discussions and clarifications concerning these data. This work was supported in part by contract PRAXIS/PCEX/P/FIS/124/96.

References

Figure Captions

Fig. 1 – Experimental 1995 NA50 Pb–Pb data for the E_T distribution of Drell–Yan $\mu^+\mu^-$ pairs [12]. The solid curve corresponds to the fit by relation (3).

Fig. 2 – Experimental 1995 NA50 Pb–Pb data for the E_T distribution associated with the production of J/ψ [12]. The solid curve corresponds to the fit by (3) with $\epsilon = .6$.

Fig. 3.a – Experimental 1995 NA50 Pb–Pb data for the ratio J/ψ over Drell–Yan [12]. The solid curve is the fit obtained by combining (3) with (4) using $\epsilon = .6$.

Fig. 3.b – Combined 1995 and 1996 NA50 Pb–Pb data for the ratio J/ψ over Drell–Yan [12]. The solid curve is the fit obtained by combining (3) with (4) using $\epsilon = .6$.
Fig. 1
Fig. 3a
Fig. 3b